University of L'Aquila Department of Electrical and Information Engineering

New induction motor designs with Aluminum and Copper rotor specially developed to reach the IE3 efficiency level

Final Report

Francesco Parasiliti, Marco Villani

University of L'Aquila Department of Electrical and Information Engineering

June 2012

Introduction

The aim of this study was to design three-phase induction motors with Aluminum and Copper cage, in the range 0.75÷22 kW, to fulfill the IE3 efficiency level according to typical performance and standard constraints.

Five sizes have been selected and particularly: 1.5 kW-6 pole, 3 kW-4 pole, 7.5 kW-4 pole, 15 kW-4 pole and 22 kW-2 pole, squirrel-cage, TEFC, 400 V, 50 Hz, S1 duty.

The sizes 1.5, 3 and 7.5 kW are "single-cage" motors, while 15 and 22 kW "double-cage" motors. In Table I are shown, for each size, the minimum efficiency levels for IE3 according to the EC Regulation No. 640/2009.

Rated power kW	Poles	Frame size	Efficiency IE3
1.5	6	100 L	82.5 %
3	4	100 L	87.7 %
7.5	4	132 M	90.4 %
15	4	160 L	92.1 %
22	2	180 M	92.7 %

Table I - The minimum efficiency level for IE3.

The motors designs, with Al and Cu cage, have been optimized in order to reach the minimum efficiency level IE3 at <u>lowest active material costs</u> and satisfy the physical and performance constraints of the designs, that are the motor specifications.

A suitable Optimization Procedure has been used that has allowed to find the "best design" by chancing the geometric dimensions of the stator and rotor shape (inner and outer stator diameters, tooth width, yoke high, slot high), the stator winding (number of turns per phase, wire size) and the stack length. Each variable has been varied between an upper and a lower limit according to the Manufacturers suggestions, in order to obtain a final optimized design whose dimensions are consistent, when possible, with the standard frame (see Annex I and II).

The motors have been optimized by minimizing the active material costs, in order to avoid an excessive motor oversizing. The active material cost is defined as follows:

$$ACM = (Wfe*Cfe) + (Ws*Ccu_W) + (Wrc*Cm) \quad (\in)$$
(1)

where:

- Wfe	weight of gross iron	(kg)
- Ws	weight of stator winding	(kg)
- Wrc	weight of rotor cage	(kg)

- Cfe	cost of premium steel (\in/kg)	
- (Ccu) _W	cost of copper wire	(∈/kg)
- Cm	cost of raw material for rotor cage (Al or Cu)	(∈/kg)

These costs do not take into account the die-casting process, the stamping process, the tooling and the structure costs.

In order to guarantee the goodness and feasibility of the optimized designs, several constrains have been introduced that concern: the rated efficiency (minimum efficiency level for IE3), the power factor, the starting performance (starting torque and starting current), the breakdown torque, the stator winding temperature rise, the rotor bars temperature rise and the slot fill factor. The values of these constraints have been fixed with reference to commercial motors of the same size of the investigated motors.

The optimization procedure is synthesized in the flow-chart shown in fig.1, where X represents the set of motor design variables and F(X) the objective function (active material cost) to minimize.

Fig. 1 - Design optimization procedure

Starting from a "preliminary design" (Initial design), the optimization algorithm iteratively updates the set of design variables (X) and try to identify an "optimal" motor by making a trade-off between the different parameters of the machine.

The block "Motor Analysis" evaluates the motor performance, the objective function and constraints values. The physical description of the motor is reduced to equivalent parameters such as resistance and inductances: the adopted model takes into account the influence of saturation on

IE3 induction motors - Cu vs Al

stator and rotor reactances and the influence of the skin effect on rotor parameters. The effects of the temperature on motor resistances are computed on the basis of a detailed "thermal network". The validity of the mathematical model has been verified by means of experimental tests on several three-phase induction motors.

The proposed procedure has allowed to optimize the 5 motor sizes to fulfill the IE3 efficiency level and to compare the optimized designs with Al and Cu rotor.

The following assumptions have been made: for each size, the motors with Al and Cu cage have the same number of stator and rotor slots, air-gap length, slot fill factor, stator slot opening, rotor skewing, shaft diameter, winding distribution and "winding factor", stator slot insulation and thermal coefficients (for the thermal network) and the same percentage for the Stray Losses calculation (2% the output power).

About the active materials, the following unit price have been imposed:

- premium steel	Cfe	0.91 (\in /kg) (provided by Bourgeois);
- raw material for Al cage	Cm_Al	1.76 (∈/kg)
- copper wire	(Ccu) _W	15% higher than the cost of Cu raw material

The cost of raw material for the copper has been related to the aluminum one, and the following three Scenarios have been introduced by imposing a different "Cu/Al" price ratio.

Scenario_1 - $\in_{CU} / \in_{AL} = 3.0$

- raw material for Cu cage	$Cm_Cu = 5.28 \ (\in/kg)$
- copper wire	$(Ccu)_W = 6.07 \ (\in/kg)$

Scenario_2 - $\in_{CU}/\in_{AL} = 3.5$

- raw material for Cu cage	$Cm_Cu = 6.16 \ (\in/kg)$
- copper wire	$(Ccu)_W = 7.08 \ (\in/kg)$

Scenario_3 - $\in_{CU} / \in_{AL} = 4.0$

- raw material for Cu cage	$Cm_Cu = 7.04 \ (\in/kg)$
- copper wire	$(Ccu)_W = 8.10 \ (\in/kg)$

The motors have been optimized with reference to the Scenario 2. The commercial "premium steel" 330-50 AP (0.5 mm thickness) has been chosen for the new designs, and the magnetic characteristics are presented in the Annex III.

Results

The results of the optimized designs, with Al and Cu cage, are shown in the following Tables, that include the main motor dimensions, the motor performance and the active material costs for the three Scenarios, calculated according to the (1): for each size, some comments have been included. Moreover, the "Torque-Speed" and "Efficiency-Load" curves have been added, to verify the goodness of the proposed designs in terms of performance and efficiency.

The detailed geometric dimensions of the new motors are shown in the Annex IV and include all stator and rotor dimensions.

Some remarks:

- The performance of the motors with Al and Cu cage are quite similar and consistent with typical performance of commercial Al motors of the same size.
- The Cu motors present always an advantage in size (diameter/stack length) and total weight.
- The total copper weight in the Cu motors (stator winding and rotor cage) is higher than the copper weight (stator winding) in the Al motors except 22 kW one.
- Difficulty to go beyond IE3 with Al technology because of limitations in housing and inability to fit with standard dimensions for the small and/or big company (see Annex I).
- For the small sizes (1.5 and 3 kW), the Cu cage motors are slightly more expensive respect to the Al motor while for the 7.5 kW the difference on the active material cost is very small; this difference could be reduced if the Al motor needs a new (out of line) housing..
- For the big sizes (15 and 22 kW), the Cu cage motors present active material costs lower than the IE3 Al motors for all Scenarios (excluded the cost of die-casting).

$ \begin{array}{c c} \eta = 82.5\% & (IE3) \\ \hline \text{Electrical steel} \\ \hline \text{Stack length} & (mm) \\ \hline \text{Outer stator diameter} & (mm) \\ \hline 160 (*) \\ \hline 152 \\ \hline \end{array} $
Electrical steel330-50 AP330-50 AStack length(mm)130126Outer stator diameter(mm)160 (*)152
Stack length(mm)130126Outer stator diameter(mm)160 (*)152
Outer stator diameter(mm)160 (*)152
N. of turns x phase 342 342
Wire size (mm^2) 0.830 $0,688$
Stator slot area (mm^2) 81.9 68.5
Rotor slot area (mm^2) 50.2 38.0
Phase current(A)3.683.65
Speed (rpm) 954 966
Power factor 0.716 0.720
Temperature (°C): Stat. winding6566
Rotor cage 76 75
Joule losses (W)Stat. winding151171
Rotor cage 74 54
Iron losses (W) 52 52
Starting Current/Rated Current 4.0 4.1
Starting Torque/Rated Torque 2.6 2.5
Max Torque/Rated Torque2.52.5
Weight (kg); Gross iron 25 21.7
Stator winding 3.32 2.62
Rotor cage 0.94 2.29
Active Material $\overline{\text{Cost}}$ (ϵ):
Scenario_1 44.56 47.74
Scenario_2 47.91 52.40
Scenario_3 51.30 57.09

1.5 kW, 6 pole (100 L) – 400 V, 50 Hz, TEFC, S1

Comments

Both designs have the same rated efficiency (82.5%) and the performance are quite similar and consistent with typical performance of a commercial Al motor of the same size.

It is important to highlight that the outer stator diameter of the Al motor allows to use commercial housing produced by a small company only (see Annex I) and not the housings of the big company: in this case a new (out of line) and more expansive housing is needed (*).

The Cu motor is compatible with all commercial housings (small and big company, see Annex I) and presents an advantage in size (diameter/stack length) with a total weight reduction of about 9%: this percentage tends to increase when a bigger housing is used for the Al cage motor. Moreover, the slots area are smaller respect the Al solution, with a reduction of about 16% for the stator slot and 24% for the rotor slot (and rotor bar). Although this significant reduction on the rotor slot area, the weight of the Cu rotor cage is twice over the Al cage and this is due to the different specific weight of the two metals.

The total copper weight in the Cu motor (stator winding and rotor cage) is about 48% higher than the copper weight (stator winding) in the Al motor.

The Cu cage motor is slightly more expensive, with an increase on the active material cost of 3 Euro for the Scenario 1 and about 6 for the Scenarios 3: this difference could be reduced if the Al motor needs a new (out of line) housing.

The following figures show the "Torque-Speed" and "Efficiency-Load" curves. Both designs present good efficiencies also at partial load (e.g. 75%).

Efficiency % - Load %

η = 87	.7% (IE3)	Al	Cu	
Electrical steel		330-50 AP	330-50 AP	
Stack length	(mm)	155	150	
Outer stator diar	meter (mm)	165 (*)	160 (*)	
N. of turns x pha	ase	186	186	
Wire size	(mm ²)	1.645	1.31	
Stator slot area	(mm^2)	125	102	
Rotor slot area	(mm^2)	93.8	58.6	
Phase current	(A)	6.28	6.19	
Speed	(rpm)	1468	1471	
Power factor		0.78	0.79	
Temperature (°C	C): Stat. winding	57	58	
_	Rotor cage	64	65	
Joule losses (W)) Stat. winding	157	179	
	Rotor cage	67	61	
Iron losses	(W)	99	89	
Starting Current	/Rated Current	5.9	6.0	
Starting Torque/	Rated Torque	2.2	2.1	
Max Torque/Rat	ted Torque	3.0	3.0	
Weight (kg);	Gross iron	31.5	28.7	
	Stator winding	4.77	3.54	
	Rotor cage	1.61	3.23	
Active Material Cost (ϵ) :				$\Delta cost (\epsilon)$
	Scenario_1	60.45	64.66	+ 4.21
	Scenario_2	65.27	71.08	+ 5.81
	Scenario_3	70.14	77.53	+ 7.39

3 kW, 4 pole (100 L) – 400 V, 50 Hz, TEFC, S1

Comments

Both designs have the same rated efficiency (87.7%) and the performance are quite similar and consistent with typical performance of a commercial Al motor of the same size.

The outer stator diameters of both designs allow to use commercial housings produced by a small company only (see Annex I) (*).

The Cu motor presents an advantage in size (diameter/stack length) with a total weight reduction of about 6%.

The comparison points out a significant reduction of stator and rotor slot area (rotor bar), for the Cu motor, of 18% and 37%

The total copper weight in the Cu motor (stator winding and rotor cage) is about 42% higher than the copper weight (stator winding) in the Al motor.

The Cu cage motor is slightly more expensive, with an increase on the active material cost for all cases, in the range between 4 and 7 Euro.

The following figures show the "Torque-Speed" and "Efficiency-Load" curves. Both designs present good efficiencies also at partial load (e.g. 75%).

Torque (Nm) - Speed (rpm)

Efficiency % - Load %

η = 90	.4 % (IE3)	Al	Cu	
Electrical steel		330-50 AP	330-50 AP	
Stack length	(mm)	200	190	
Outer stator diar	meter (mm)	215 (*)	210	
N. of turns x pha	ase	114	108	
Wire size	(mm^2)	4.80	4.15	
Stator slot area	(mm^2)	205	168	
Rotor slot area	(mm^2)	115	52.5	
Phase current	(A)	15.41	14.96	
Speed	(rpm)	1478	1475	
Power factor		0.78	0.81	
Temperature (°C	C): Stat. winding	71	73	
	Rotor cage	82	85	
Joule losses (W)) Stat. winding	272	260	
	Rotor cage	113	128	
Iron losses	(W)	206	209	
Starting Current	/Rated Current	6.9	7.0	
Starting Torque/	Rated Torque	2.2	2.2	
Max Torque/Rat	ted Torque	3.5	3.6	
Weight (kg);	Gross iron	69.1	62.6	
	Stator winding	11.0	8.30	
	Rotor cage	3.49	5.16	
Active Material Cost (ϵ) :				$\Delta cost (\epsilon)$
	Scenario_1	135.8	134.6	- 1.20
	Scenario_2	146.9	147.5	+ 0.60
	Scenario_3	158.1	160.5	+ 2.4

7.5 kW, 4 pole (132 M) – 400 V, 50 Hz, TEFC, S1

Comments

Both designs have the same rated efficiency (90.4) and the performance are quite similar and consistent with typical performance of a commercial Al motor of the same size.

Difficulty to go beyond IE3 with Al technology because of limitations in housing and inability to fit with standard dimensions for the small and big company (see Annex I). The outer stator diameter of the Al cage needs a new (out of line) and more expansive housing (*).

The Cu motor can use commercial housings produced by small and big company (Annex I) and presents an advantage in size (diameter/stack length) with a total weight reduction of about 9%: this percentage tends to increase when a bigger housing is used for the Al cage motor. The slots area are smaller respect the Al solution, with a reduction of about 18% for the stator slot and 54% for the rotor slot (and rotor bars) but the weight of the Cu rotor cage is 50% higher than the Al cage.

The total copper weight in the Cu motor (stator winding and rotor cage) is about 22% higher than the copper weight (stator winding) in the Al motor.

The Cu motor has an active material cost lower respect to the Al motor for the Scenario 1: for the other two cases the difference are very small. If we take into account the cost of the new housing for the Al motor, the Cu motor is certainly more convenient (excluded the cost of die-casting process)...

The following figures show the "Torque-Speed" and "Efficiency-Load" curves. Both designs have flat efficiency curves in the range 75%÷100%.

Torque (Nm) - Speed (rpm)

Efficiency % - Load %

$\eta = 92.1$	% (IE3)	Al	Cu	
Electrical steel		330-50 AP	330-50 AP	
Stack length	(mm)	225	215	
Outer stator diame	eter (mm)	255	245	
N. of turns x phas	e	78	78	
Wire size	(mm^2)	7.90	5.60	
Stator slot area	(mm^2)	228	182	
Rotor slot area	(mm ²)	83	65	
Phase current	(A)	28.1	27.4	
Speed	(rpm)	1465	1474	
Power factor		0.84	0.86	
Temperature (°C)	: Stat. winding	70	73	
	Rotor cage	82	84	
Joule losses (W)	Stat. winding	422	544	
	Rotor cage	367	270	
Iron losses	(W)	349	326	
Starting Current/F	Rated Current	6.7	6.8	
Starting Torque/R	lated Torque	3.4	3.2	
Max Torque/Rate	d Torque	3.7	3.7	
Weight (kg);	Gross iron	109	96.4	
	Stator winding	13.75	9.22	
]	Rotor cage	2.58	6.36	·
Active Material Cost (ϵ) :				$\Delta cost (\epsilon)$
	Scenario_1	187.2	177.3	- 9.9
	Scenario_2	201.1	192.2	- 8.9
	Scenario_3	215.1	207.2	- 7.9

15 kW, 4 pole (160 L) - 400 V, 50 Hz, TEFC, S1 - double-cage

Comments

Both designs have the same rated efficiency (92.1%) and the performance are quite similar and consistent with typical performance of a commercial Al motor of the same size.

Both designs can use commercial housings produced by small and big company (see Annex I).

The Cu motor presents an advantage in size (diameter/stack length) with a total weight reduction of about 11%.

The comparison points out a significant reduction of stator and rotor slot area (rotor bar) of about 18% and 37% respectively: the weight of the Cu rotor cage is twice over the Al cage.

The total copper weight in the Cu motor (stator winding and rotor cage) is about 13% higher than the copper weight (stator winding) in the Al motor.

The motor with copper cage allows a reduction on the active material cost in all cases, from 8 to 10 Euro (excluded the cost of die-casting process).

The following figures show the "Torque-Speed" and "Efficiency-Load" curves. Both designs present good efficiencies also at partial load and a flat efficiency curves in the range 75%÷100%.

Torque (Nm) – Speed (rpm)

Efficiency % - Load %

η = 92.7	7% (IE3)	Al	Cu	
Electrical steel		330-50 AP	330-50 AP	
Stack length	(mm)	215	205	
Outer stator diam	eter (mm)	290	285	
N. of turns x phas	se	84	84	
Wire size	(mm^2)	6.36	4.80	
Stator slot area	(mm^2)	200	164	
Rotor slot area	(mm^2)	122	83	
Phase current	(A)	20.3	20.2	
Speed	(rpm)	2933	2939	
Power factor		0.93	0.93	
Temperature (°C)	: Stat. winding	60	62	
	Rotor cage	70	72	
Joule losses (W)	Stat. winding	414	510	
	Rotor cage	516	467	
Iron losses	(W)	390	360	
Starting Current/I	Rated Current	9.0	9.0	
Starting Torque/F	Rated Torque	4.4	4.2	
Max Torque/Rate	ed Torque	4.8	4.7	
Weight (kg);	Gross iron	135	124	
	Stator winding	17.37	12.69	
	Rotor cage	2.45	5.18	
Active Material Cost (ϵ) :				$\Delta cost (\epsilon)$
	Scenario_1	232.6	217.2	- 15.4
	Scenario_2	250.1	234.6	- 15.5
	Scenario_3	267.9	252.1	- 15.8

22 kW, 2 pole (180 M) – 400 V, Δ , 50 Hz, TEFC, S1 - double-cage

Comments

Both designs have the same rated efficiency (92.7%) and the performance are quite similar and consistent with typical performance of a commercial Al motor of the same size.

The outer stator diameters of both designs allow to use commercial housings produced by small and big company (see Annex I).

The Cu motor presents an advantage in size (diameter/stack length) with a total weight reduction of about 8%. The reduction of stator and rotor slot area (rotor bar) are about 18% and 32% respectively and the weight of the Cu rotor cage is twice over the Al cage.

The total copper weight in the Cu motor (stator winding and rotor cage) and Al motor (stator winding) is equal, making the steel weight the difference to the benefit of copper rotor solution.

Moreover, the motor with copper cage allows a reduction on the active material cost in all cases of about 16 Euro (excluded the cost of die-casting process):

The following figures show the "Torque-Speed" and "Efficiency-Load" curves. Both designs present good efficiencies also at partial load and a flat efficiency curves in the range 75%÷100%.

Torque (Nm) – Speed (rpm)

Annex 1

Dimensions of commercial housings (produced by Chinese small and big Companies)

Big Company

Frame size H	Length L (mm)	Inner diameter D (mm)
90 L	192	130
100 L	198	155
112 M	214	175
132 M	268	210
160 M	270	260
160 L	314	260
180 M	317	290
180 L	355	290
200 L	375	327

Small Company

Frame size H	Length L (mm)	Inner diameter D (mm)
90 L	230	138
100 L	255	165
112 M	282	175
132 M	320	210
160 M	278	260
160 L	322	260
180 M	317	290
180 L	355	290
200 L	385	327

Annex II

Structure costs: Housing, Bearings, Shaft (in Euro) (Chinese small and big Companies)

Frame size H	Housing	Bearings	Shaft
90 L	11	3.3	2.4
100 L	16	4.0	3.3
112 M	20	6.7	3.6
132 M	32	9.5	6.0
160 M	46	12	11
160 L	54	12	12
180 M	61	17	15
180 L	70	17	17
200 L	94	20	21

Big Company

Small Company

Frame size H	Housing	Bearings	Shaft
90 L	20	7.8	3.5
100 L	24	8.2	5.7
112 M	31	9.2	5.8
132 M	49	18	9.0
160 M	73	20	14
160 L	76	20	16
180 M	91	41	20
180 L	98	41	23
200 L	126	45	26

Notes:

- The housing price includes 2 end covers and outlet box.
- The Bearing price includes 2 bearings for each motor.

Annex III

Magnetic characteristics of the "premium" steel 330-50AP (0.50 mm thickness)

B (T)	H (A/m)	Losses (W/kg)
0.5	67	0.42
0.6	75	0.56
0.7	83	0.73
0.8	93	0.90
0.9	105	1.10
1.0	121	1.31
1.1	143	1.55
1.2	178	1.80
1.3	242	2.09
1.4	402	2.45
1.5	946	2.86
1.6	2470	3.27
1.7	5281	3.71
1.8	9776	4.14

50 Hz

Annex IV

1.5 kW, 6 pole – Design data

(in mm)

		Aluminum	Copper
N. stator slots		54	ŀ
N. rotor slots		40)
Stack length		130	126
Outer stator diameter	Do	160	152
Inner stator diameter	Di	95	93
Shaft diameter		34	
Air-gap length	δ	0.30	
N. turns per phase		342	342
Wire size		0.830 mm^2	0.688 mm^2
Stator tooth width	s1	2.80	2.98
Stator slot heigh	s2	21.2	19.7
Stator slot opening	s3	2.4	
Rotor tooth width	r1	3.28	3.67
Rotor slot heigh	r2	23.0	21.51
Rotor skewing (in rotor slot pitch)		1.8	
Stator slor area		81.9 mm ²	68.5 mm ²
Rotor slor area		50.2 mm^2	38.0 mm^2

(in mm)

	Aluminum	Copper	
N. stator slots	36	5	
N. rotor slots	28	3	
Stack length	155	150	
Outer stator diameter Do	165	160	
Inner stator diameter Di	98	93	
Shaft diameter	34	34	
Air-gap length δ	0.3	80	
N. turns per phase	186	186	
Wire size	1.645 mm^2	1.311 mm^2	
Stator tooth width s1	3.60	3.85	
Stator slot heigh s2	19.7	18.2	
Stator slot opening s3	2.4	4	
Rotor tooth width r1	3.65	4.60	
Rotor slot heigh r2	21.0	17.0	
Rotor skewing (in rotor slot pitch	h) 1.	1.8	
Stator slor area	125 mm^2	102 mm^2	
Rotor slor area	93.8 mm^2	58.6 mm^2	

(in	mm)
(111)	mm)

		Aluminum	Copper
N. stator slots		36	
N. rotor slots		46	
Stack length		200	190
Outer stator diameter	Do	215	210
Inner stator diameter	Di	130	124
Shaft diameter		44	1
Air-gap length	δ	0.40	
N. turns per phase		114	108
Wire size		4.80 mm^2	4.15 mm^2
Stator tooth width	s1	4.50	4.90
Stator slot heigh	s2	23.9	22.2
Stator slot opening	s3	2.9	9
Rotor tooth width	r1	2.80	4.0
Rotor slot heigh	r2	32.0	18.0
Rotor skewing (in rotor slot pitch)		2.2	
Stator slor area		205 mm^2	168 mm^2
Rotor slor area		115 mm^2	52.5 mm^2

(in mm)

		Aluminum	Copper	
N. stator slots		36		
N. rotor slots		4	46	
Stack length		225	215	
Outer stator diameter	Do	255	245	
Inner stator diameter	Di	159	155	
Shaft diameter		6	0	
Air-gap length	δ	0.4	40	
N. turns per phase		78	78	
Wire size		7.90 mm^2	5.60 mm^2	
Stator tooth width	s1	6.50	6.70	
Stator slot heigh	s2	25.94	22.80	
Stator slot opening	s3	2.55		
Inner rotor tooth width	r1	5.40	5.40	
Inner rotor slot depth	r2	16.38	10.0	
Outer rotor slot width	r3	5.18	4.96	
Inner rotor slot opening depth	r4	6.50	5.80	
Inner rotor slot opening width	r5	1.60	1.60	
Rotor skewing (in rotor slot pitch)		2.2		
Stator slor area		228 mm^2	182 mm^2	
Rotor slor area		83 mm^2	65 mm^2	

(in mm)

		Aluminum	Copper	
N. stator slots		36		
N. rotor slots		3	30	
Stack length		215	205	
Outer stator diameter	Do	290	285	
Inner stator diameter	Di	165	160	
Shaft diameter		5	0	
Air-gap length	δ	0.	60	
N. turns per phase		84	84	
Wire size		6.36 mm^2	4.80 mm^2	
Stator tooth width	s 1	6.5	6.0	
Stator slot heigh	s2	22.5	19.2	
Stator slot opening	s3	3.0		
Inner rotor tooth width	r1	8.0	7.8	
Inner rotor slot depth	r2	17.70	10.0	
Outer rotor slot width	r3	5.46	5.0	
Inner rotor slot opening depth	r4	4.0	4.0	
Inner rotor slot opening width	r5	1.6	1.6	
Rotor skewing (in rotor slot pitch)		2.6		
Stator slor area		200 mm^2	164 mm^2	
Rotor slor area		122 mm^2	83 mm^2	

IE3 induction motors – Cu vs Al